M1.(a) Whether there was a reaction or not
(b) brown / orange / dark deposit on zinc or blue solution turns colourless / paler
(c) Variable

Measuring instrument

more than one line drawn from a variable negates the mark
(d) (Most reactive) Magnesium
(Least reactive) Copper
must all be correct
(e) would not be safe or too reactive allow too dangerous
(f) Gold
(g) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}$ allow multiples
(h) carbon
(i) Loss of oxygen

M2.(a) any two from:

- concentration / volume of dilute hydrochloric acid
- mass of metal powder
- surface area of metal powder
- \quad stirring (of any) / rate of stirring
allow reacted for the same length of time
(b) $4.2^{\circ} \mathrm{C}$
allow Magnesium Test 2
and any one from:
- lower mass of magnesium added
- surface area of magnesium too low
- magnesium coated in magnesium oxide (so took a while to start reacting)
- not stirred
- not stirred as quickly as the other metals
- not reacted for as long a time as the other metals allow reason for break in circuit
(c) $\quad 17.4\left({ }^{\circ} \mathrm{C}\right)$
(d) bubbles of gas
more (bubbles) seen with calcium than other metals
allow any correct comparison between two metals
(e) any value between $7.9^{\circ} \mathrm{C}$ and $12.3^{\circ} \mathrm{C}$

M3.(a) any one from:

- there was a flame
- energy was given out
- a new substance was formed
- the magnesium turned into a (white) powder answers must be from the figure
(b) Magnesium oxide
(c) The reaction has a high activation energy
(d) 9
(e) They have a high surface area to volume ratio
(f) any one from:
- Better coverage
- More protection from the Sun's ultraviolet rays
(g) any one from:
- Potential cell damage to the body
- Harmful effects on the environment
(h) indication of $\frac{1}{1.6}=0.625$ and
use of indices $10^{-9}-10^{-6}=10^{3}$
Both steps must be seen to score first mark
$0.625 \times 1000=625$ (times bigger)

M4.(a) (i) economical
(ii) phytomining
(iii) carbon dioxide
(b) (i) copper/ Cu
(ii) copper / ions have a positive charge it = copper ions allow copper ions have a different charge accept copper / ions are free to move accept to gain electrons accept copper / ions are attracted to the negative electrode or opposite charges attract
(c) any two from:
ignore not biodegradable or does not decay

- copper ores are limited / running out
allow copper is running out
- copper can be recycled
- copper can be reused
- copper is expensive
- landfill sites are filling up
- copper compounds are toxic
allow copper is toxic

M5.(a) (i) copper / Cu
(ii) 50 (p)
(iii) 25
(iv) tin
(b) any one form:

- high cost of copper
allow metal is expensive
- less copper available or (copper ores exhausted / only low-grade ores available) allow copper is non-renewable
- high demand for copper
- high percentage (\%) of copper in the coin
- inflation (of cost)

(b) 0 / zero / none / no charge
electron
(c) (i) nucleus
(ii) atomic number
(iii) mass number
(ii)

accept line drawn from word 'Monomer' or from the monomer box to the correct 'Polymer' allow the correct 'Polymer' indicated by a tick, circled etc.
(b) (i) nickel accept Ni
(ii) $75(\%)$
(iii) (stainless steel) is hard /strong / durable

$$
\begin{aligned}
& \text { it = stainless steel } \\
& \text { accept (pure) iron is soft }
\end{aligned}
$$

(stainless steel) resistant to corrosion or unreactive accept (pure) iron rusts / corrodes / reacts do not allow corrosive
(c) Advantage : Conserves resources of crude oil and ores
do not allow more than one tick in the advantage column

Disadvantage : High cost of separating materials do not allow more than one tick in the disadvantage column

